North Sea
DispFormer: Pretrained Transformer for Flexible Dispersion Curve Inversion from Global Synthesis to Regional Applications
Liu, Feng, Deng, Bao, Su, Rui, Bai, Lei, Ouyang, Wanli
Surface wave dispersion curve inversion is essential for estimating subsurface Shear-wave velocity ($v_s$), yet traditional methods often struggle to balance computational efficiency with inversion accuracy. While deep learning approaches show promise, previous studies typically require large amounts of labeled data and struggle with real-world datasets that have varying period ranges, missing data, and low signal-to-noise ratios. This study proposes DispFormer, a transformer-based neural network for inverting the $v_s$ profile from Rayleigh-wave phase and group dispersion curves. DispFormer processes dispersion data at each period independently, thereby allowing it to handle data of varying lengths without requiring network modifications or alignment between training and testing data. The performance is demonstrated by pre-training it on a global synthetic dataset and testing it on two regional synthetic datasets using zero-shot and few-shot strategies. Results indicate that zero-shot DispFormer, even without any labeled data, produces inversion profiles that match well with the ground truth, providing a deployable initial model generator to assist traditional methods. When labeled data is available, few-shot DispFormer outperforms traditional methods with only a small number of labels. Furthermore, real-world tests indicate that DispFormer effectively handles varying length data, and yields lower data residuals than reference models. These findings demonstrate that DispFormer provides a robust foundation model for dispersion curve inversion and is a promising approach for broader applications.
SeisFusion: Constrained Diffusion Model with Input Guidance for 3D Seismic Data Interpolation and Reconstruction
Wang, Shuang, Deng, Fei, Jiang, Peifan, Gong, Zishan, Wei, Xiaolin, Wang, Yuqing
Geographical, physical, or economic constraints often result in missing traces within seismic data, making the reconstruction of complete seismic data a crucial step in seismic data processing. Traditional methods for seismic data reconstruction require the selection of multiple empirical parameters and struggle to handle large-scale continuous missing data. With the development of deep learning, various neural networks have demonstrated powerful reconstruction capabilities. However, these convolutional neural networks represent a point-to-point reconstruction approach that may not cover the entire distribution of the dataset. Consequently, when dealing with seismic data featuring complex missing patterns, such networks may experience varying degrees of performance degradation. In response to this challenge, we propose a novel diffusion model reconstruction framework tailored for 3D seismic data. To constrain the results generated by the diffusion model, we introduce conditional supervision constraints into the diffusion model, constraining the generated data of the diffusion model based on the input data to be reconstructed. We introduce a 3D neural network architecture into the diffusion model, successfully extending the 2D diffusion model to 3D space. Additionally, we refine the model's generation process by incorporating missing data into the generation process, resulting in reconstructions with higher consistency. Through ablation studies determining optimal parameter values, our method exhibits superior reconstruction accuracy when applied to both field datasets and synthetic datasets, effectively addressing a wide range of complex missing patterns. Our implementation is available at https://github.com/WAL-l/SeisFusion.
IntraSeismic: a coordinate-based learning approach to seismic inversion
Romero, Juan, Heidrich, Wolfgang, Luiken, Nick, Ravasi, Matteo
Seismic imaging is the numerical process of creating a volumetric representation of the subsurface geological structures from elastic waves recorded at the surface of the Earth. As such, it is widely utilized in the energy and construction sectors for applications ranging from oil and gas prospection, to geothermal production and carbon capture and storage monitoring, to geotechnical assessment of infrastructures. Extracting quantitative information from seismic recordings, such as an acoustic impedance model, is however a highly ill-posed inverse problem, due to the band-limited and noisy nature of the data. This paper introduces IntraSeismic, a novel hybrid seismic inversion method that seamlessly combines coordinate-based learning with the physics of the post-stack modeling operator. Key features of IntraSeismic are i) unparalleled performance in 2D and 3D post-stack seismic inversion, ii) rapid convergence rates, iii) ability to seamlessly include hard constraints (i.e., well data) and perform uncertainty quantification, and iv) potential data compression and fast randomized access to portions of the inverted model. Synthetic and field data applications of IntraSeismic are presented to validate the effectiveness of the proposed method.
Advanced Deep Regression Models for Forecasting Time Series Oil Production
Hosseini, Siavash, Akilan, Thangarajah
Global oil demand is rapidly increasing and is expected to reach 106.3 million barrels per day by 2040. Thus, it is vital for hydrocarbon extraction industries to forecast their production to optimize their operations and avoid losses. Big companies have realized that exploiting the power of deep learning (DL) and the massive amount of data from various oil wells for this purpose can save a lot of operational costs and reduce unwanted environmental impacts. In this direction, researchers have proposed models using conventional machine learning (ML) techniques for oil production forecasting. However, these techniques are inappropriate for this problem as they can not capture historical patterns found in time series data, resulting in inaccurate predictions. This research aims to overcome these issues by developing advanced data-driven regression models using sequential convolutions and long short-term memory (LSTM) units. Exhaustive analyses are conducted to select the optimal sequence length, model hyperparameters, and cross-well dataset formation to build highly generalized robust models. A comprehensive experimental study on Volve oilfield data validates the proposed models. It reveals that the LSTM-based sequence learning model can predict oil production better than the 1-D convolutional neural network (CNN) with mean absolute error (MAE) and R2 score of 111.16 and 0.98, respectively. It is also found that the LSTM-based model performs better than all the existing state-of-the-art solutions and achieves a 37% improvement compared to a standard linear regression, which is considered the baseline model in this work.
Uncertainty and Explainable Analysis of Machine Learning Model for Reconstruction of Sonic Slowness Logs
Wang, Hua, Wu, Yuqiong, Zhang, Yushun, Lai, Fuqiang, Feng, Zhou, Xie, Bing, Zhao, Ailin
Logs are valuable information for oil and gas fields as they help to determine the lithology of the formations surrounding the borehole and the location and reserves of subsurface oil and gas reservoirs. However, important logs are often missing in horizontal or old wells, which poses a challenge in field applications. In this paper, we utilize data from the 2020 machine learning competition of the SPWLA, which aims to predict the missing compressional wave slowness and shear wave slowness logs using other logs in the same borehole. We employ the NGBoost algorithm to construct an Ensemble Learning model that can predicate the results as well as their uncertainty. Furthermore, we combine the SHAP method to investigate the interpretability of the machine learning model. We compare the performance of the NGBosst model with four other commonly used Ensemble Learning methods, including Random Forest, GBDT, XGBoost, LightGBM. The results show that the NGBoost model performs well in the testing set and can provide a probability distribution for the prediction results. In addition, the variance of the probability distribution of the predicted log can be used to justify the quality of the constructed log. Using the SHAP explainable machine learning model, we calculate the importance of each input log to the predicted results as well as the coupling relationship among input logs. Our findings reveal that the NGBoost model tends to provide greater slowness prediction results when the neutron porosity and gamma ray are large, which is consistent with the cognition of petrophysical models. Furthermore, the machine learning model can capture the influence of the changing borehole caliper on slowness, where the influence of borehole caliper on slowness is complex and not easy to establish a direct relationship. These findings are in line with the physical principle of borehole acoustics.
Explainable Artificial Intelligence driven mask design for self-supervised seismic denoising
Birnie, Claire, Ravasi, Matteo
The presence of coherent noise in seismic data leads to errors and uncertainties, and as such it is paramount to suppress noise as early and efficiently as possible. Self-supervised denoising circumvents the common requirement of deep learning procedures of having noisy-clean training pairs. However, self-supervised coherent noise suppression methods require extensive knowledge of the noise statistics. We propose the use of explainable artificial intelligence approaches to see inside the black box that is the denoising network and use the gained knowledge to replace the need for any prior knowledge of the noise itself. This is achieved in practice by leveraging bias-free networks and the direct linear link between input and output provided by the associated Jacobian matrix; we show that a simple averaging of the Jacobian contributions over a number of randomly selected input pixels, provides an indication of the most effective mask to suppress noise present in the data. The proposed method therefore becomes a fully automated denoising procedure requiring no clean training labels or prior knowledge. Realistic synthetic examples with noise signals of varying complexities, ranging from simple time-correlated noise to complex pseudo rig noise propagating at the velocity of the ocean, are used to validate the proposed approach. Its automated nature is highlighted further by an application to two field datasets. Without any substantial pre-processing or any knowledge of the acquisition environment, the automatically identified blind-masks are shown to perform well in suppressing both trace-wise noise in common shot gathers from the Volve marine dataset and colored noise in post stack seismic images from a land seismic survey.
Navy welcomes largest group of new officers in seven decades
Almost 300 Royal Australian Navy (RAN) members have completed officer training in 2021 – the largest cohort of new officers to graduate in a single year since the 1950's. This week, 125 RAN members graduated from the New Entry Officers' Course (NEOC) at the Royal Australian Naval College in Jervis Bay. Another 173 officers completed the world-class leadership course in the first half of 2021. This year's NEOC graduates come from all over Australia and from a range of backgrounds, including high-school leavers and professionals looking to switch careers. Chief of Navy, Vice Admiral Michael Noonan said it was great to see such a large number of new officers from diverse backgrounds graduating at a time of significant growth and change for Navy.
Keynote Programme Announced for SPE Offshore Europe 2019 - SPE Offshore Europe
Artificial intelligence, energy diversification and the transformation of the workforce will be amongst the major talking points at SPE Offshore Europe 2019. Senior international industry figures will co-chair the keynote sessions which also includes late life and decommissioning, underwater innovation, transformative technologies to lower the carbon footprint, digital security, integrated technologies, digitalisation, standardisation and finance. The event will take place from 3-6 September at the new £333million The Event Complex Aberdeen (TECA), under the theme: 'Breakthrough to Excellence – Our license to operate'. Michael Borrell, SPE Offshore Europe 2019 Conference Chair & Senior Vice President, North Sea and Russia at Total said: "Our committee is full of international oil and gas industry leaders and they have developed an excellent programme which gets to the heart of the main opportunities and challenges facing the region. "Offshore Europe 2019 is a great opportunity for us to challenge ourselves in the North Sea basin.